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oj= 152 MeV gives too small a /i~+He^ —> W+v capture 
rate since it corresponds to too large a mean-square 
radius. (Raising a by about 20 MeV to obtain the 
correct radius would spoil the agreement with the 
photodisintegration data.^) 

We note that the previous calculations '̂̂ ^ of the 
/x~+He^ -^ W+v, which have ranged from 1.40X 10̂  to 
1.66X10^ sec~"̂ , differ primarily in the assumed nuclear 
wave function. The capture rate essentially depends 
only on the nuclear wave function through the mean-
square radius, and the measurements of the capture rate 
lead to a radius of 1.6 to 1.7 F which is in agreement 

15 A. Fujii, Phys. Rev. 118, 870 (1960); C. Werntz, Nucl. Phys. 
16, 59 (I960); L. Wolfenstein, Proceedings of the 1960 International 
Conference on High Energy Physics at Rochester (University of 
Rochester, Rochester, 1960), p. 529; Bull. Am. Phys. Soc. 6, 2>Z 
(1961); Proceedings of the 1962 International Conference on High 
Energy Physics at CERN, edited by J. Prentki (CERN, Geneva, 
1962), p. 821; A. F. Yano, Phys. Rev. Letters 12, 110 (1964). 
See also A. Fujii and Y. Yamaguchi, Progr. Theoret. Phys. 
(Kyoto) 31, 107 (1964) and W. Drechsler and B. Stech, Z. Physik 
178, 1 (1964). 

with values found by Hofstadter and collaborators in 
elastic e-Hê  and e-W scattering.^ ̂  

Finally we observe that the class II axial-vector cur­
rent enters in the muon-capture matrix element Eq, (1) in 
the same manner as the induced pseudoscalar term. Con­
sequently, unless the induced pseudoscalar contribution 
is accurately known, the presence of a small amount of 
the class II current cannot be detected. 
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It is shown that the stationary states of the nonrelativistic Schrodinger's equation are just the stationary 
states of a classical-mechanical system which is subject to random submicroscopic fluctuations of position. 
The proof covers the case (1) of a single particle moving in a potential, and (2) of two particles interacting 
through a potential V{xi — X2). The results can be easily generalized to the case of n interacting particles. 

INTRODUCTION 

IN his theory of hidden variables in quantum me­
chanics, Bohm^ has suggested that the uncertainty 

expressed by 

(Ap)(Aq)>h (1) 

might be due to the presence of some random sub-
microscopic fluctuations which v̂ ôuld introduce un­
certainty into the otherwise classical equations of 
motion. 

PART I 

Let us then consider a function p(Xjt) such that 

/ 
d^x p(Xjt) — l, (2) 

^ D. Bohm, in Quantum Theory, Radiation and High Energy 
Physics, edited by D. Bates (Academic Press Inc., New York, 
1962), Vol. I l l , p. 345. 

p{x,t) is to be viewed either as the probability of finding 
the particle at the point x at time /, or as a function 
such that mp(x,t) is the mass density of a continuous 
distribution of matter of total mass m. The two points 
of view will be interchangeable throughout the paper. 

The particles are subject to random fluctuations, so 
in general there exists no velocity (the paths of the 
particles may be discontinuous). However, let us 
assume that if the particle was at x at time /, then at 
time t+dt it will have a probability w(tyX,dt,dx) of 
being found at the point x+dx. Since wis a. probability 
distribution we have 

/ w(tyX,dt,dx)d^ (dx) = 1. 

Then we define the velocity at x at time t by 

v(x,t) = lim ( — ) / (dx)w(t.x.dt,dx)d^(dx). 
d'-^\dt/J 
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W(t,Xjdt,dx) ==w(t, X, dt, dx-\-v{x,t)di), 

Then W is the probability that if the particle was at 
X at time t, at time t-\-dt it will be at x--\-v{xfidt-\-dx* 
Also the above implies that 

A-) I lim 
dt 

(dx) W {t,x,dt,dx)d^ (dx) = 0. 

We assume that the particle follows a path which is 
the superposition of the classical continuous path 
[given by v{x,t)'2 and a random Brownian motion 
fluctuation (which is iDdependent of position and time). 
Therefore we require 

and 

/ 

W(t,x,dt,dx) = W(dt,dx) 

{dx)W(dt,dx)d' (dx) = Ddt, (3) 

where D is an arbitrary constant. Now consider some 
time interval At—Ndt and let N —^ oo as ^/ —̂  0 in such 
a way that A^ remains fixed. Then, if we let 

N 

Ax=Yl dx^, 

according to the central limit theorem of probability 
theory,2 as dt —> 0, we have 

W{AtAx) = {2ivDAt)-^f^ e x p [ - {AxY/lDAf]. (4) 

Furthermore, we may still choose At as small as we like.^ 
Now the total displacement 5x during the time 

interval At is 5x=v(x,0A^+Ax. Therefore the proba­
bility of going from x at time t to x+So; at time t-\-At 
is just 

1 
P(dx,At,xJ) = e x p ( - (bx-vAtf/2DAt), (5) 

(2TDAtyf^ 

where v—v(x,t). This implies that 

p(x, t+At) = / p(x-dx, t)F(8x, At, x-dx, t)d\bx). (6) 

In the limit as A/ —> 0 we may write 

p(x—5x, t) = p{x,t)—Y^hx^V jp{x,t) 

+ J S Z bXibXjViVjp{x,t) (7) 

2 See, for example, N. Wax, Selected Papers on Noise and Sto­
chastic Processes (Dover Publications, New York, 1954), pp. 17 
and 18. Pages 1-44 of this book are an excellent introduction to 
the type of method used in this paper. 

^The limiting process here is clearly suspect; however, I feel 
that it gives more insight into the nature of the assumptions 
being made than if I just arbitrarily delSned 

W(At,Ax)-- 1 /-(Axy\ 
{lirDAty^ 

Furthermore, these assumptions are just the standard ones of 
the theory of Brownian motion. 

P(x-dx, t)=^P(x,t)~J^ dXjVjP(x,t) 

+ i Z L dXi8xjViVjP(x,t). (8) 

Retaining only terms of first order in At^ we have 

D 
p{x, t+At) = p{x,i)-Al E Vj(pvj)+At~V'p, (9) 

2 
which implies that 

dp 
— -Vj(pvj)+hDV'p, 
dt 

(10) 

This impHes that 

dp 

dt -+v. P ^ . y - | / ) — ) j = 0. (11) 

The quantity {D/2) (Vp/p) is just the diffusion velocity. 
Let V(x) be the potential field in which the particle 

moves. Then we assume 

vj{x, t+At) 
1 /T 

N J 
Vj(x—dx, t) — AtTr 

V{x—dx)-

m 

Xp{x~dx, t)P{bx, At, x-bx, t)d^{bx), (12) 

where N is the normalization constant 

N-- •• / p ( ^ ~ hx, t)P{hx, At, x-8x, t)d^(dx) 

= p {x,t) - AtVi{pv,)+At{lD)V^p. (13) 

The factor of [yj{x—bx, t) — {At){\./m)VjV{x—bx)'] ap­
pears because the particles had velocity Vj{x—hx, t) at 
x—bx at time t and received an additional velocity 
increment \^~{At){l/m)V3V{x—bx)~]dMt to the force 
[—VjF] on the particles. The factor p{x—bx,t)P{bXy 
At, x—bxy t) appears because the total number of 
particles arriving at x from x—bx is equal to the number 
of particles 2^t x—bx multiplied by the probability of a 
particle going from x—bx to x in time A .̂ We then 
average over all bx to obtain the mean velocity 
v{x,t+At). 

Expanding v, p, P , and F in a Taylor series, inte­
grating and retaining terms of only first order in Aî , 
we get 

U{x,t)+At—\ {p-AtV^{pv,)+ (ID) VV) 

= pvj- At (pVi)ViVj- AtVjVi(pVi)+At {iD)V^ (pvj) 

V(x) 
— pAtVf (14) 

m 
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which impHes that 

D A V I D K E R S H A W 

For our case v(xyt) = (D/2)(Vp/p), which implies that 

dvj 

\dt I dt 
E=/p(.,0((fy(y)(^)VF(.)).3.. (23) 

/) vV\ 
— V , — J . (15) 

Ifi • 0 as a; - ^ oo then 

I shall concentrate on the stationary state solutions 
of the above equations.* If we are to have a stationary 
state, then the difEusion velocity must just counter­
balance the mean particle velocity. That is, v{x,{) 
= {D/2){Vp/p), implies [by Eq. (10)] 

E = \p{x,t)\-
{DmfrV^p mm 

dp dVj 
— 0 - > = 0 , 
dt dt 

putting these into Eq. (15) gives 

P -J P 

(16) 

2m L2p \ 2 p . 

— I p(^, 0 (constant) d^x = constant. 

Finally then we have 

(Dmy V2(VP) 

+ V(x)\d^x 

2m \/p 
+ V(x) = E, 

(24) 

(25) 

= -VjV(x)+\~\ mVji—j . 

Now 
VjP 

-=Vilnp—> e. 
/VkP\ 

(17) 

(18) 

which is just Schrodinger's equation for the stationary 
state, 

^=(Vp)exp(-i(E/m, (26) 

all we need do is put D= h/m, 
I t may seem strange that v(x,t) is not zero p.e. , 

v{x,t) = (D/2) (Vp/p) 7^0] while the solution is supposed 
to be a stationary one. I t must be remembered that the 
total path is the sum of the v{xjt) part and the random 
fluctuation part. For stationary solutions the displace­
ments due to the random fluctuations, on the average, 
just cancel the displacements due to the mean velocity. 

PART II 

implies that 

Vy 

However 

r m/V^p / V p \ ^ 1 
J _-2)2__ _ _ \_^v(x)\ = 0. 
L 2 \ 2 p \ 2 p / / J 

vy /VPY_VHVP) 

2p \ 2p / \/p 

and a function whose gradient is everywhere zero is a 
constant so 

Now we shall consider the problem for two inter­
acting particles since this is the problem of real physical 
interest. Let p(xi,X2,t) be the probability of finding the 
first particle at Xi and the second particle at X2 at time 

(19) t. Let there be a potential force V(xi-'X2) operating 
between the two particles, and let Vi(xiyX2jt) and 
V2(xiyX2ji) be their respective velocities. There is no 
good reason why the velocity of the one particle should 

(20) be statistically independent of the position of the other, 
so we write Vi(xi,X2,t) rather than vi(xiyt), 

Then 

/ 
dHid^X2 p(xijX2,l) = 1 (27) 

(Dmyv^ix/p) 

2m \ / p 
-F(x) = constant. (21) and the random displacements Aô i and A:i:2 of the two 

particles are governed by : 

To evaluate the constant we observe that the total 
energy of the system is given by 

E== p(x,t)limvH~V(x)']d'x, (22) 

W'{At,Axi) = 

W'(AI,AX2) = 

1 

(2wMt/miy^^ 

1 

{2TrfiAt/m2y 

expl 

-exp 

/ mi{Ax^\ 

( 77^-1.(28) 2Atfi / 

m2{Ax2)\ 

2Atfi 1 , (2« 

* I have, as yet, had no success in showing that the nonstationary *inave, as yet, naa no success in snowing maiinenonstauonary - ^^ • -n^^^ T „.^ ..i,̂ ,Tr^^ î,„-«- n ^./... ^^A ^.. ô 4-k« 
solutions of Eqs. (11) and (15) are just the nonstationary solutions Since m Part I we showed that I>= fl/m, and Mi is the 
of Schrsdinger's equation. mass of the first particle and Mi the mass of the second. 
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Now let r=Xi—X2 and R={miXi+m2X2)/(nii+m2), then 

d(x2) f 
W(At,Ar) = ̂ -;~^ / W(At,Ax)W^(At, Ax-Ar)d^{Ax), (30) 

d{r) 

where d(x2)/d(r) is the Jacobian of X2 with respect to r. This implies that 

r dHAx) / \mi{Axy-\-m2{Ax--Ary\\ 
W{At Ar) = / ~ - expf -^ ^ — ] 

J l{2ThAty/mim2ji^ \ 2hAt I 

rexp(—ju(Ar)V2M/)"l C 6^(Ax) f {mx^r'^2){Ax—\m2l(:mx\-m2)~\AYY'\ 

or finally 

[exp(^—ju(Ar;7i^A/j"] C d\Ax) / Kmx-^rm2)\Ax—\m2l(m\-\-m2)\ArY\ 

{lirfiAt/^ifi'' A J llirhAt/{mi-\-m2)y^^\ IfiAt / 

1 / M(Ar)2\ 
W{At Ar) expf ) , (32) 

, . —- \ 2hAl I {iTrfiAt/^yi'' 

where ju= (miW2)/(wi+m2) = reduced mass. Similarly 

d{x2) r 
W{AtAR) = / W^ (At Ax) W^At, (M/m2)AR- (mi/m2)Ax)d^ (Ax). (33) 

d(R) J 
This implies that 

/M\^ r d^(Ax) / r /M mi \^-\ / \ 
Tr(A/,Ai^) = I — / exp - mi(AxY+m2[ —AR Ax 1 / 2hAt) 

\m2/ J ((27rhAt)^/mim2y'^ \ L \m2 ^2 / J/ / 

rexp(-M(AR)^/2hAt)-\ r d^(Ax) / (Mmi/m2)(Ax-AR)\ 

L (2TrhAt/M)'f^ J J r27rhAt/(Mmi/m2)V^\ 2% At J' 
or finally 

1 / M(AR)\ 

[2TrfiAt/(Mmi/m2)y 

1 

(2irhAt/Mfl^ 

(27rM//M)3/2 

1 

(27r^A///x)3/2 
which implies that 

p(r, R, t+At)= / p(r~8r, R-8R, t)Pr(dr, At, r-br, R-8R, t)PR(dR, At, r~8r, R-dR, t)d^rd^R 

fi/V/p VB'P\ 
==p~AtZVrj(pcj)+VBj(pSj)2+At-l + ) . 

2 \ M M / 

(34) 

W(At,AR)=^ expf ) , (35) 
'" \ 2hAt / 

where M=mi+m2~ total mass. Now let 
S(ryR,t)— (miVi+m2V2)/M 

c(r,R,t) = Vi--V2. (36) 

Then the total change in position is given by 
8R=SAt+AR 

6r=cA/+Af. (37) 
We can rewrite p(xi,X2ft) as 

d (:^i,X2) 
p(r,R,t)-=p(xi,X2,t) (3S) 

d(r,R) 
We have then as before: 

1 / M(dR-SAt)\ 
Pj,(8RAt,r,R,t)== exp (39) 

. . — '-'^""^ \ 2hAt I 
1 / fx(8r-cAt)\ 

Pr(dr,At,r,R,t) exp , (40) 
"̂  - • ' ^"- \ 2hAt I 

(41) 
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This implies (as before) that 
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which implies that 
2 \ M M ) ' 

dp r / ^ ^'jP 

dt L \ 2jjL p L \ 2M P / J L \ IM p ) \ 

The potential Vif) affects only c and not 6*. We have then 

Sir, R, t+At) = — / S(r-8r, R-dR, t)p(r-8r, R-8R, t)PrPi 
N J 

>d'5rd^dR, 

(42) 

(43) 

(44) 

N= / p(r-dr, R-dR, t)PrPRd^drd'dR 

=p—At[y Tj (pcj)+V Rj (pS. 

and 

V)]+A,-[ —+—. 
M M J 

(45) 

Rd'drd'dR, (46) 
1 / T V r F ( r - 5 0 l 

c(r, i^, /+A0==— / c{r-dr, R-8R, t)-At \p{r-dr, R-8R, t)PrP 
N J L M J 

Expanding S, c, Prj PR, and V(r) in Taylor series, integrating, and retaining terms only of first order in At, we 
obtain 

and 

M\ —+(SiVR,)Sj+{ciVr,)Sj \ = M—=M\—1 5 , + Sj , (47) 
Ldt J dt l2/x\ p p ) 1M\ p p J] 

flf^rKpcd V M fl /VRKPCJ) VR^P\ fdcj 
P^[—+{SiVR,)ci+{ciVn)cA = ix—^--Vr,V{r)+pi\—[-^^ ( ' "-cr—]\ . (48) 

\dt J dt ilpX p p ) 2M\ p p 

Again we shall concentrate on the stationary state solutions. As before we put c=h/2ix{Vrp/p) d^iidS—h/lM 
X (VRP/P) which gives by Eq. (43) 

dp/dt=0. (49) 
and 

dcj/dt=dSj/dt=0. (50) 

By analogy to the separation of variables in quantum mechanics, we assume that 

p(r,R)=pr(r)pR(R), 

c(r,R)==c(r) 

S(r,R)=S(R), 

Putting these into Eqs. (47) and (48) we get 

h' VR^WPR) 

implying that 

and 

and 
2M \/pR 

— EE 

2/X \/pr 
-Er-Vir), 

(51) 

(52) 

(53) 

(54) 

(55) 

where the identification of the integration constants with the energies has been made by the same method as in 
Part I. 
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If we let 
^R= (VPR) exp[—^(EB/^)^] 

and 
• \ ( ' r = ( \ / p r ) e x p [ - i ( £ r A ) i ] , 

we have just Schrodinger's equation for a two-particle system. 

and 
2M 

E^4,,= ^VrVr+F(r)^.. 
2n 

PART III 

(56) 

(57) 

(58) 

(59) 

At this point some physical interpretation of the preceding equations in in order. I think that they are best 
understood by relating them to the theory of stationary Markov chains.^ The state of our system is described by 
giving its position x and its velocity v. Our knowledge of the system at any time t is described by a probability 
function P(x,Vjt), and the two-step transition probabihty was shown to be 

w(Xy V, x+8x, v+8v, At)--
1 vVix)y / {dx-vAty\ / vK(x)\ 

\ 2DAt / \ m / 
• expl m 8v+At-

{IwDAty/^ \ 2DAt / \ m 
(60) 

where b^ (x) is Dirac's delta function. We also showed that stationary probability distributions were of the form 

D Vp 

P 

Now if P(x,v,t) = F(x,v) is to be stationary it must satisfy 

/ D Vp\ 
P{x,v) = p{x)b^{v j (61) 

P{x,v)= I w{x—8Xf v—dv, X, V, t)P{x—hx, v—8v)d^{dx)(P(dv] (62) 

But, it is clear that P(XyV) does not satisfy this condition for it could not possibly maintain a delta function velocity 
distribution. P(xyV) is however stationary in the sense that if we let 

then 

/ vQ(x,v)dh\ 

P{x,v) = dhQ(x,v) W 

I Q{x,v)dh 

(63) 

(64) 

To show that this is so we have from Eqs. (60), (61), and (64) 

r d^xd^v f V F \ / D Vp 
Q{x,i)-=^ / p{x-hx)h\hi)-^Ai WXv-hi) 

J {lirDAtf'^ \ m J \ 2 p J ' \ 2D At 

f d^8x / DVp VV(x)\ ( [5x-A/(Z)/2)(Vp/p)(x-5:r)]2' 
— I p(x—dx)dH V (x—8x)+At ) expl -

J (2TDAtY'^ \ 2 p m J \ 
hence 

(27rPA0'/' 

JQ{x,v)dh= j 

\bx-{v-bv)AtJ\ 

2DAt 

d^x / Zdx- At (D/2) {Vp/p) (x- dx)J\ 

{2TrDAtyi^ 
•p{x~8x) expf 

2DAt -) 

) , (65) 

(66) 

> See, for example, A. I. Khinchin, Mathematical Foundations of Information Theory (Dover Publications, New York, 1957). 
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and to order At Eq. (66) becomes 

D/ViP \ D /ViP\ D 
^p{x)-M~[ Vi ]p-M~pv{ )+A/—W 

2 \ p / 2 \ p / 2 

D D 
--p{x)- At~V^p+Ai—V^p ==p{x). (67) 

2 2 
Similarly 

( fvQ(x,v)dhj/uQix,v)dh\ 

1 r #5a; rD VV(x)-l / 

p(x)J {IwDAty^'ll m J \ 

ldx~ At (D/2) (Vp/p) {x-dx)J\ 

2DAt J (68) 

and to order At Eq. (68) becomes 

2 p [ m \ 2 / L p 2 J \ 2 / p L \ p / J \ 2 / p 

smce 

DVp ( V{x) D^VKVP)\ DVp 
= +Atvl + )-=v= (69) 

2 p \ m 2 \/p / 2 p 

jy VWP) 

m + V{x) = 0, (Q.E.D.) (70) 
2 VP 

We have shown that Eqs. (60), (61), and (64) taken together imply that the square root of p(x) satisfies 
Schrodinger's equation. 

Hence the stationary solutions of Schrodinger's equation are just the stationary probability distributions of the 
motion of the system considered as a Markov chain. 

One other observation is germane. R. P. Feynman, in his '^Space-Time Approach to Non-Relativistic Quantum 
Mechanics,"^ shows that most of the contribution to \l/{xk+i,t+At) comes from Xk such that | Xk+i—Xk \ ^^^fiAt/m^DAt. 
Thus another way of looking at the equations derived is to think of wave motion as arising from statistical spreading 
in analogy to the sending out of waves from every point on the wave front in Huygen's principle. 

^ R. P. Feynman, in Selected Papers in Quantum Electrodynamics^ edited by J. Schwinger (Dover Publications, New York, 1958), 
p. 330. 


